

Fig. 1. Strukturen der Ionen $[Co(C_5H_5)]^*$ (ohne H-Atome) und HCl_2^- mit Ellipsoiden der thermischen Schwingung (50% Aufenthaltswahrscheinlichkeit, ausgenommen H). Beide Ionen befinden sich auf einer kristallographischen Spiegelebene, die durch die Atome Co, C(1) und C(4) sowie durch alle Atome des Anions verläuft.

Fig. 2. Elementarzelle von $[Co(C_5H_5)]_2HCl_2$ (Stereobild, ohne H-Atome des Kations).

Tabelle 2 zusammengestellt. Kation und Anion sind in Fig. 1, die Elementarzelle in Fig. 2 gezeigt.

Verwandte Literatur. Cobaltocenium-Salze: Biegini; Calderazzo, Pampaloni & Zanazzi (1987); Hartl & Brüdgam (1989); Rohrmann, Herrmann, Herdtweck, Riede, Ziegler & Sergeson (1986); Riley & Davis (1978); Ruhlandt-Senge, Sens & Müller (1992). Hydrogendichlorid-Salze: Atwood, Bott, Means, Coleman, Zhang & May (1990); Mootz, Poll, Wunderlich & Wussow (1981); Müller & Dörner (1982); Schroeder & Ibers (1968); Swanson & Williams (1970); Thewalt & Link (1991).

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

Literatur

- ATWOOD, S. L., BOTT, S. G., MEANS, C. M., COLEMAN, A. W., ZHANG, H. & MAY, T. M. (1990). Inorg. Chem. 29, 467-470.
- BIEGINI, P., CALDERAZZO, F., PAMPALONI, G. & ZANAZZI, P. F. (1987). Gazz. Chim. Ital. 117, 27.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- HARTL, H. & BRÜDGAM, I. (1989). Z. Naturforsch. Teil B, 44, 936-941.
- JOHNSON, C. K. (1965). ORTEP. Bericht ORNL-3794. Oak Ridge National Laboratory, Tennessee, VStA.
- Mootz, D., Poll, W., WUNDERLICH, H. & WUSSOW, H. G. (1981). Chem. Ber. 114, 3499–3504.
- Müller, U. & Dörner, H.-D. (1982). Z. Naturforsch. Teil B, 37, 198-200.
- RILEY, P. E. & DAVIS, R. E. (1978). J. Organomet. Chem. 152, 209-219.
- ROHRMANN, J., HERRMANN, W. A., HERDTWECK, E., RIEDE, J., ZIEGLER, M. & SERGESON, G. (1986). Chem. Ber. 119, 3544– 3557.
- RUHLANDT-SENGE, K., SENS, I. & MÜLLER, U. (1992). Z. Naturforsch. Teil B, 46. Im Druck.
- SCHROEDER, L. W. & IBERS, J. A. (1968). Inorg. Chem. 7, 594-599. SHELDRICK, G. M. (1976). SHELX76. Program für die Kristall-
- strukturbestimmung. Univ. Cambridge, England.
- SWANSON, J. S. & WILLIAMS, J. M. (1970). Inorg. Nucl. Chem. Lett. 6, 271–276.
- THEWALT, U. & LINK, U. (1991). Z. Naturforsch. Teil B, 44, 293-295.

Acta Cryst. (1992). C48, 743-745

Bis(méthanesulfonate) de Tétraammine-trans-dibromoplatine(IV) Monohydrate

PAR P. KHODADAD ET N. RODIER

Laboratoire de Chimie minérale, Faculté des Sciences pharmaceutiques et biologiques, 5 Rue J.-B. Clément, 92296 Châtenay-Malabry CEDEX, France

(Reçu le 12 juillet 1991, accepté le 25 septembre 1991)

Abstract. Tetraammine-*trans*-dibromoplatinum(IV) bis(methanesulfonate) monohydrate, [PtBr₂-(NH₃)₄].2CH₃SO₃.H₂O, $M_r = 631.2$, monoclinic, $P2_1/n$, a = 17.757 (3), b = 6.1899 (6), c =15.637 (5) Å, $\beta = 115.45$ (2)°, V = 1552 (1) Å³, Z =4, $D_x = 2.701$ Mg m⁻³, λ (Mo $K\overline{\alpha}$) = 0.7107 Å, $\mu =$ 14.5 mm⁻¹, F(000) = 1184, T = 293 (1) K, R = 0.026 for 2171 unique reflections. The title compound is not isostructural with [PtCl₂(NH₃)₄].2CH₃SO₃.H₂O which has the symmetry C2/m. However, its structure is closely related to that of this compound. Both Pt atoms have octahedral environments. Bond

0108-2701/92/040743-03\$03.00

© 1992 International Union of Crystallography

Tableau 1. Coordonnées atomiques relatives, facteursde température isotropes équivalents (Ų) et écarts-
type

Tableau 2. Principales distances interatomiques (Å),
angles des liaisons (°) et écarts-type

$B_{\text{éq}} = (4/3)[a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33} + (ab\cos\gamma)\beta_{12} + (a\cos\beta)\beta_{12} + b^2\beta_{22} + b^2\beta_{33} + b^2\beta_$	β_{13}
$+ (bc\cos\alpha)\beta_{23}$].	

	x	у	Z	$B_{\dot{e}q}$
Pt(1)	0,0	0,0	0,0	1,260 (7)
Br(1)	0,09928 (4)	0,2994 (1)	0,05708 (5)	2,00 (1)
N(1)	0,0716 (3)	-0,136(1)	-0,0609 (4)	1,8 (1)
N(2)	0,0684 (3)	-0,155 (1)	0,1273 (4)	1,9 (1)
Pt(2)	0,0	0,0	$\frac{1}{2}$	1,307 (7)
Br(2)	0,08613 (4)	-0,2965 (1)	0,48551 (5)	2,11 (1)
N(3)	-0,0044 (3)	0,127 (1)	0,3754 (4)	2,0 (1)
N(4)	0,1076 (3)	0,168 (1)	0,5773 (4)	1,8 (1)
S(1)	0,5968 (1)	0,1140 (3)	0,2982 (1)	1,75 (4)
O(1)	0,5315 (3)	0,016 (1)	0,3169 (4)	2,8 (1)
O(2)	0,6022 (3)	0,0281 (9)	0,2137 (3)	2,4 (1)
O(3)	0,5907 (3)	0,3516 (9)	0,2952 (4)	2,6 (1)
C(1)	0,6934 (4)	0,046 (2)	0,3960 (6)	4,7 (2)
S(2)	0,19752 (9)	0,2570 (3)	0,3677 (1)	1,94 (4)
O(4)	0,1428 (4)	0,106 (1)	0,3009 (5)	4,7 (2)
O(5)	0,1770 (3)	0,279 (1)	0,4473 (4)	3,8 (1)
O(6)	0,2856 (3)	0,209 (1)	0,3987 (4)	2,9 (1)
C(2)	0,1807 (5)	0,513 (1)	0,3134 (6)	4,4 (2)
O(7)	0,7214 (3)	0,562 (1)	0,2604 (4)	3,9 (2)

lengths belong to the following ranges: 2.4468 (8)– 2.4607 (8) Å for Pt–Br, 2.052 (5)–2.071 (7) Å for Pt–N, 1.758 (9)–1.791 (6) Å for S–C and 1.426 (7)– 1.474 (6) Å for S–O. Numerous N–H…O and O–H…O hydrogen bonds take part in the cohesion of the structure.

Partie expérimentale. Préparation: action de la vapeur de brome sur une solution aqueuse concentrée de bis(méthanesulfonate) de tétraammineplatine(II). Cristal approximativement parallélépipédique: $0,05 \times 0,20 \times 0,22$ mm. D_m non mesurée. Diffractomètre Enraf-Nonius CAD-4. Dimensions de la maille déterminées avec 25 réflexions pour $8,73 \le \theta \le 17,64^\circ$. $0,049 \le (\sin\theta)/\lambda \le$ lesquelles 0,650 Å⁻¹. Balayage $\theta/2\theta$ d'amplitude s = [0,85 + $0.35 \operatorname{tg} \theta$]°. $-21 \le h \le 20, \quad 0 \le k \le 8, \quad 0 \le l \le 20.$ Réflexions de contrôle de l'intensité: $\overline{620}$, $\overline{1206}$ et 132. Diminution de I au cours des mesures: 2,4%. Correction de décroissance. 3545 réflexions indépendantes mesurées, 1374 inobservées $[I < 3\sigma(I)]$. Méthode de l'atome lourd et série de Fourier des ΔF . Les atomes d'hydrogène n'ont pas été localisés. Affinement basé sur les F, programme à matrice complète. Facteurs de diffusion des International Tables for X-ray Crystallography (1974, Tome IV, pp. 99 et 149). Paramètres affinés: x, y, z et β_{ii} de Pt, Br, S, O, N et C. Corrections d'absorption: programme DIFABS (Walker & Stuart, 1983). Valeurs maximale et minimale du coefficient de correction: 1,761 et 0,779, R = 0,026, wR = 0,032, $w = 1/\sigma^2(F)$, S 1,18, g (coefficient d'extinction secondaire isotrope) = 4,8 (6) × 10⁻⁸, $(\Delta/\sigma)_{max} = 0,01$, $\Delta\rho_{max} = 0,8$ (2), $\Delta\rho_{min} = -0,9$ (2) e Å⁻³. Programmes de calcul du système *SDP* (B. A. Frenz & Associates,

Les distances signalées par une astérisque correspondent aux liaisons hydrogène

Pt(1)— $Br(1)$	2,4468 (8)	$N(1) - O(1^{i})$	2,923 (8)				
Pt(1) - N(1)	2.065 (7)	N(1)—O(3 ⁱⁱ)	2,987 (9)				
Pt(1) - N(2)	2.068 (5)	N(1)-O(6 ⁱⁱⁱ)	2,874 (6)				
Pt(2)— $Br(2)$	2,4607 (8)	N(2)-O(1 ⁱⁱⁱ)	3,062 (9)				
Pt(2) - N(3)	2.071 (7)	N(2)—O(4)	2,940 (9)				
Pt(2) - N(4)	2.052 (5)	N(2)-O(6 ⁱⁱⁱ)	2,916 (8)				
$S(1) \rightarrow O(1)$	1.445 (6)	$N(3) - N(4^{v})$	2,900 (9)				
S(1) - O(2)	1.465 (6)	$N(3) - O(2^{vi})$	3,006 (8)				
S(1) - O(3)	1,474 (6)	N(3)—O(3 ⁱⁱⁱ)	2,977 (8)				
S(1) - C(1)	1,791 (6)	N(3)—O(5)	3,069 (8)				
S(2) - O(4)	1,426 (7)	$N(4) \rightarrow O(2^{vii})$	2,876 (9)				
S(2)—O(5)	1,446 (7)	$N(4) \rightarrow O(5^{vii})$	2,878 (9)				
S(2)—O(6)	1,456 (5)	$N(4) - O(7^{vii})$	3,056 (8)				
S(2) - C(2)	1,758 (9)	$O(2) - O(7^{iv})$	2,989 (8)				
		O(3)-O(7)	2,910 (9)				
Br(1)Pt(1)N(1)	89,2 (2)	O(2)—S(1)—O(3)	111,5 (4)				
Br(1) - Pt(1) - N(2)	88,1 (2)	O(2) - S(1) - C(1)	106,0 (4)				
N(1) - Pt(1) - N(2)	91,8 (2)	O(3) - S(1) - C(1)	106,9 (4)				
Br(2) - Pt(2) - N(3)	88,3 (2)	O(4) - S(2) - O(5)	110,4 (4)				
Br(2)-Pt(2)-N(4)	88,5 (2)	O(4) - S(2) - O(6)	114,0 (4)				
N(3) - Pt(2) - N(4)	90,6 (2)	O(4) - S(2) - C(2)	108,3 (4)				
O(1) - S(1) - O(2)	113,6 (3)	O(5)—S(2)—O(6)	111,4 (3)				
O(1) - S(1) - O(3)	111,7 (4)	O(5) - S(2) - C(2)	106,0 (4)				
O(1)-S(1)-C(1)	106,7 (4)	O(6)—S(2)—C(2)	106,3 (4)				
Code de symétrie: (i) $-\frac{1}{2} + x$, $-\frac{1}{2} + y$, $-\frac{1}{2} + z$; (ii) $-\frac{1}{2} + x$, $\frac{1}{2} - y$,							
$-\frac{1}{2} + 7$ (iii) $\frac{1}{2} - r - \frac{1}{2} + v \frac{1}{2} - 7$ (iv) $\frac{3}{2} - r - \frac{1}{2} + v \frac{1}{2} - 7$ (v) $- r$							

$$\frac{1}{2} + z; (iii) \frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z; (iv) \frac{3}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z; (v) - x - y, 1 - z; (vi) \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z; (vii) -\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z.$$

Fig. 1. Dessin de la structure vue selon [010].

Inc., 1982). Fig. 1: programme *ORTEPII* (Johnson, 1976). Ordinateur DEC VAX 3100.

Les coordonnées atomiques relatives et les facteurs de température isotropes équivalents sont rapportés dans le Tableau 1,* les principales distances inter-

^{*} Les listes des facteurs de structure observés et calculés, des coefficients d'agitation thermique anisotrope et des distances entre atomes appartenant à des ions ou à des molécules différents, ont été déposées aux archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 54695: 19 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester, CH1 2HU, Angleterre. [Référence de CIF: DU0315]

atomiques et les angles des liaisons dans le Tableau 2. La Fig. 1 représente la structure vue selon [010].

Littérature associée. Bis(méthanesulfonate) de tétraammine-*trans*-dichloroplatine(IV) monohydrate: Baldé, Khodadad & Rodier (1989). Dichlorure de *trans*-tétraamminedihydroxoplatine(IV): Toffoli, Khodadad & Rodier (1988). Bis(méthanesulfonate) de tétraammineplatine(II): Khodadad & Rodier (1989). Méthanesulfonate d'ammonium: Wei (1986). Désordre dans la structure du diamminedibromoplatine(II) diamminetétrabromoplatine(IV): Hall & Williams (1958).

Références

- B. A. FRENZ & ASSOCIATES, INC. (1982). SDP Structure Determination Package. College Station, Texas, EU.
- BALDÉ, L., KHODADAD, P. & RODIER, N. (1989). Acta Cryst. C45, 859-861.
- Hall, D. & Williams, P. P. (1958). Acta Cryst. 11, 624-626.
- JOHNSON, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- KHODADAD, P. & RODIER, N. (1989). Acta Cryst. C45, 208-210.
- TOFFOLI, P., KHODADAD, P. & RODIER, N. (1988). Acta Cryst. C44, 2021-2022.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 159-166. WEI, C. H. (1986). Acta Cryst. C42, 1839-1842.

Acta Cryst. (1992). C48, 745-747

Structure of *a*-Chloro-*b*-dichloromethylstannio-[*dc*,*ef*-bis(8-dimethylamino-1naphthyl)]platinum(IV)

BY W. J. J. SMEETS AND A. L. SPEK*

Bijvoet Center for Biomolecular Research, Vakgroep Kristal- en Structuurchemie, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

AND J. A. M. VAN BEEK AND G. VAN KOTEN*

Debye Research Institute, Department of Metal Mediated Synthesis, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

(Received 20 July 1991; accepted 8 October 1991)

Abstract. Trichloro-1 $\kappa^2 Cl_2 \kappa Cl$ -bis[(8-dimethylamino- $2\kappa N$)-naphthyl- $2\kappa C^{1}$]-methyl- $1\kappa C$ -platinumtin(Pt-Sn)dichloromethane solvate, [PtSn- $(C_{12}H_{12}N)_2(CH_3)Cl_3].CH_2Cl_2, M_r = 860.56, ortho$ rhombic, $P2_12_12_1$, a = 11.0716 (4), b = 11.6305 (4), c = 22.6463 (9) Å,V = 2916.1 (2) Å³. Z = 4, $D_x = 1.960 \text{ g cm}^{-3}$, λ (Mo $K\alpha$) = 0.71073 Å, μ $= 61.8 \text{ cm}^{-1}$, F(000) = 1648, T = 294 K, R = 0.025for 3239 unique observed diffractometer data with I $> 2.5\sigma(I)$. The platinum(IV) centre is octahedrally bonded to two C,N-chelate bonded dman ligands, a Cl atom and a dichloromethyltin group [Pt-Sn = 2.5489 (5) Å].

Experimental. Data were collected at 294 K on an Enraf–Nonius CAD-4F diffractometer for a yellow block-shaped crystal ($0.68 \times 0.35 \times 0.25$ mm) mounted in a Lindemann-glass capillary to prevent loss of dichloromethane solvate. Unit-cell parameters were determined from a least-squares treatment of the SET4 setting angles of 25 reflections with $14.0 < \theta < 17.8^{\circ}$. The unit-cell parameters were checked for the

0108-2701/92/040745-03\$03.00

© 1992 International Union of Crystallography

presence of higher lattice symmetry (Spek, 1988).

^{*} Authors to whom correspondence should be adressed.

Intensity data for 3699 reflections were collected (h 0:14, k 0:14, l 0:29) in $\omega/2\theta$ scan mode with $\Delta\omega =$ $(0.55 + 0.35 \tan \theta)^{\circ}$ using Zr-filtered Mo Ka radiation. Data were corrected for Lp, for a linear decay (4.1%) of the reference reflections (134, $\overline{1}3\overline{4}$) during the 56 h of X-ray exposure time and for absorption (DIFABS: Walker & Stuart, 1983), corrections in the range 0.84-1.11, resulting in 3239 unique reflections with $I > 2.5\sigma(I)$. The Pt and Sn atoms were found with standard Patterson methods (SHELXS86; Sheldrick, 1986), other non-H atoms were located from subsequent difference Fourier analyses. Refinement on F was carried out by full-matrix least-squares techniques (SHELX76; Sheldrick, 1976). H atoms were introduced at calculated positions (C-H =0.98 Å) and included in the refinement riding on their carrier atoms. All non-H atoms were refined with anisotropic thermal parameters: H atoms with one common isotropic thermal parameter [U =0.068 (5) Å²]. The dichloromethane solvate molecule was refined with bond restraints. The absolute structure was checked by refinement with opposite f''anomalous-dispersion factors, resulting in R = 0.061,